Category Archives: Math

Asilomar 2017

My math partner, Stacy and I were once again fortunate to present this last weekend.  We were invited to speak at California Math Council’s northern conference at Asilomar. We had never been to the northern conference, so we were eager to compare it to our experience in Palm Springs (last year).  I had heard that this was smaller and more intimate, but with better speakers because of its proximity to the Bay Area.  

First of all, the ground of Asilomar are gorgeous.  If you never been, Asilomar was like a leadership retreat-type place surrounded with trees all the while the ocean waves were crashing in the background.  When we were checking into our rooms, there was a random deer waiting for us (no joke).   It was quaint.  It was peaceful and zen-like. 

We were running into all these math heroes every step and every turn.  While backing out the car, I was close to running over Dan Meyer, Zak Champagne and Mike Flynn.  While walking to explore the beach, there was Marilyn Burns taking a stroll in maroon hat.  We helped Ruth Parker get inside our residential building.  It was like being at an  All-Star Math Camp.  

Friday night we went to see and hear from Dr. Jo Boaler.  While waiting to hear from her, I ran into this guy–Chris Shore.  We’ve been planning something for next year.  Incredible guy.  We caught up with each other while Stacy listened in on Dr. Boaler.

IMG_0318
Chris Shore (@mathprojects)  #ClubClothesline

Saturday morning came and it was our time to shine.  Stacy and I presented on the flipped hundreds chart and our work on clothesline math to about 15 teachers.  Really engaged participants.  Lots of conversation.  Lots of sharing.  We felt incredible.  It seems like we keep getting better.  We have found purpose with what we are doing.  

One of our participants stopped us in the hall afterwards and congratulated us on our session.  He said that he couldn’t believe how engaging we were.  We made the session feel really personal.  We were really energetic with our participants and made everyone feel welcome.  Usually there are sessions where there are “talking heads,” but we were the quite the opposite.  And on top of all this, that we made him think about what’s going on in the classroom.

The rest of our Saturday was spent seeing other speakers.  We got to listen in on Annie Fetter and her thoughts on writing for math.  We listened in on Cathy Humphreys as she explained her dissertation on mathematical agency.  Lastly, we attended Ann Carlise and her K-2 number talks with number lines session.

Usually I look for one thing to bring home and use.  I say that if you can just gleam one thing from any professional development, then it’s worth it.  I was lucky enough to have a math partner to talk this through.  We like poking each other with questions and then come to a conclusion. 

When all was mostly done, we questioned what we got out of this conference.  Stacy and I learned something far greater then what some of these great authors and math educators were telling us.  

  • We figured out what kind of speakers we want to continue to be.  We need to be us.  The comments from one our participants really was thought provoking.  And that was just our personalities.  We want to be personable in our sessions.  I don’t want to be a “talking head.”  If you know who we are, we are completely the opposite of that.  And we won’t change that.  That’s who we are.
  • One of our expectations is that our participants walk away with something that they could use the next day.  In some of the sessions we attended as participants, that wasn’t happening.  There was lots of theory, but I wouldn’t know what to do with the information in my classroom.  Because of us flying up north, we couldn’t bring our full “show.”   I’ve been expecting our participants to look up all our resources on my blog, but I don’t know if that’s happening. How do we make sure they fully leave with something in hand?  (We have ideas).

 

We would go again in a heart beat.  We learned more about ourselves then we expected and that was major leap forward.  We didn’t expect that, but we couldn’t pass up processing our thoughts on the subject.  

And so we continue to grow.  Onto the next conference.

Until next time….

keep laughing & keep smiling,

Kristen 

 

 

 

Making sense of conversions

My son, Jared, is in 6th grade.  He has told me he thinks it’s “cool” that I’m teaching 6th grade too.  According to him, we have stuff to talk about.  I can finally help him with his homework.  (Really?  Like I’ve never been able to help you with any of your other homework?!?  What the what?!?!?).  Of course I left that last editorial in my head, but I think I knew what he was talking about.   I think he meant that we are finally at the same grade level as teacher (me) and student.  

On one evening, he was having trouble with conversions of measurements. This was his homework.IMG_6073

I asked him about his notes from class.  “How did your teacher teach this?  Where are your notes?

And this is what he showed me.

img_3179.jpg
“Memorize the 3 steps.” Uh–no.

 I was not thrilled to see “memorize” on my son’s notes.  It dawned on my husband and I that our son’s teacher has only been teaching a few years.  He’s probably used to just memorizing steps and procedures.  I don’t like to teach that way.  I like to teach for understanding.  I like to teach more conceptually.  I like to have my students make sense of a problem rather than “memorize” steps.

Just for kicks and giggles, I went to page 290 to see what is said.  This is what I found.

IMG_4589
Here are the “steps” my son was asked to memorize

I sat and stared at his paper and at the “steps.” If my son didn’t understand and remember the steps, how could I get him to comprehend what they were asking?

I looked at the 1st question again.  “If 16 C = 1 gallon, then 8 gallons = ________?”  Rather than doing a fancy algorithm or proportion (which he hadn’t done in the curriculum–my husband had an issue with that.), I went back to the basics.  Let’s draw a picture.  

IMG_7889

16 cups are in one gallon (rectangles).  8 gallons with 16 cups in each.   Once I sat and explained the situation to my son, the lightbulb went off in his head.  “Oh mom, all you have to do is multiply 16 times 8 to get the number of cups.”  BINGO!  

And the rest of the hour, we drew pictures, diagrams, and whatever else helped him make sense of the conversions.  And each time we drew a new picture, the lightbulb kept going off in his head.  (Proud Math teacher and Mom!)IMG_9373

The next day after school, I asked my son if his teacher said anything about the homework we did.   My son told me that his teacher said,you should have done it the way I told you too.”   ARE YOU KIDDING ME?!?!?

giphy
I “heart” Tina Fey.

MATH RANT – –   After close to twenty years of teaching math, this just blew me out of the water.  It is no secret that there are many ways to get answers to math problems.  I usually give the anecdote that there are many ways to get from here to New York.  Some ways are faster, some ways are slower, some ways are more expensive and that’s ok.  Pick which way works best for you…..as long as you get to NY.  Same goes for math.  It is our job and soul purpose to teach our students.  It is well known that one size doesn’t fit all.  One approach to solving conversions doesn’t work for everyone.  Why are we still having students memorize procedures if they don’t understand the problem?  What happened to making sense of things? It only happens to be the first standard of math practice!!!    It baffles me that this is from a newer teacher who hasn’t done any conceptual lessons and/or applications.   The whole thing blows my mind! Maybe it’s also the realization that not every math teacher thinks or teaches like me.  

So what do we do?  Do we challenge teachers like this?  Is it worth the fight when they may not understand the importance themselves?  

My son’s situation just proves that there’s more work to be done out there.  Teachers still need training.  And just because we, in our youth, learned to memorize procedures, doesn’t mean we actually made sense of things.  

Math rant over. Disengaging.  

Until next time, 

Kristen

The next term is…

Usually on Thursday nights, I try to squeeze in an hour of professional development by participating in a #elemmathchat on Twitter.  It’s a terrific hour of discourse between coaches, teachers, and all kinds of math peeps.  

Recently, Mark Chubb (@MarkChubb3) hosted a #elemmathchat and posted this.

DJKlLFQW0AAagtJ

My students know that I love throwing them a “challenge” question every now and again.  I use lots of things that I find on Twitter or just online.  I’m just curious as to what their perspective will be and what their conversations will be.  And they are getting used to me bugging them for a picture of their work so that I can blog about it later.  

Here’s a slide show of some of their answers

This slideshow requires JavaScript.

These two students had a pattern similar to what I would think would be the next shapes.

What do you think it should be?  Or do we need more info?

 

After this experience, I’m thinking of re-trying this type of exploration with Visual Patterns.

Until next time,

Kristen

Cents clothesline

Recently, I was invited into a 2nd grade classroom to work on money (2.MD.8 Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using $ and ¢ symbols appropriately).   The teacher wanted to try out something new to go along with this standard.  My suggestion was to try out the clothesline.  Let’s see if students could put different variations of coins from least to greatest.  It totally make cents (1st bad money pun)

And it went splendidly.  

Each student was given a card to work on.  They calculated the total amount and put their answers on a post it note.  When they were ready, the hung their cards on the clothesline.

This slideshow requires JavaScript.

When they were finished, we went over each card and made sure that we added each coin correctly. 

At the end of the session, they students asked why they were doing the activity now (they were well passed their money unit).  I answered by telling them how many skills were involved with this activity.  

  • recognizing each coin and its value.
  • practicing their addition skills with one and two digit numbers
  • comparing and ordering the numbers
  • showing equality with some of the coins (for example- 1 dime is the same as 2 nickels which is the same as 10 pennies)
  • realizing what happens when you have more than 100 cents.

After my answers, I realized how much “bang we got with our buck.” (2nd bad money pun).  This activity had a lot going on it.  And all we did was put up a string and gave them cards.   But the thinking that went on was nothing less than incredible.  

 

Until next time,

Kristen

 

Writing in math

Like I was saying in another blog-post, I’ve been exploring the different ways and types of writing that could go on in a math classroom. Last year,  I was asked to present on the subject.  

This is a topic I dabbled in when I was in my own classroom, so I was pretty excited to share with my elementary teachers.  

It’s been a question that’s been in everyone’s heads for such a long time.  How do we incorporate writing in math?  I know that it should be done, but I wanted it to have be meaningful.  I wanted it to be authentic.  A student’s writing is one way for us to see inside their heads.  What’s going on in that brain?  How is he/she approaching problems? 

As a parent, I’ve seen my own son come home with those “write to explain” questions at the bottom of his worksheets.  Usually his answers are short and blunt.  Or some of us have seen writing like this…

tumblr_inline_nxemap2Y751t2pr7r_1280Yup…this kid is going places.  I do appreciate the humor in this, however this is not what we are going for.

Some elementary teachers have admitted to me that they usually skip the “explain” questions at the end of the homework.  And let’s admit it…what student completely takes ownership of those questions at the end?  How much thinking/reasoning are teachers seeing out of those questions?  It’s not happening. 

We need to get our students’ buy-in.  We need them to take ownership.  We need them to be engaged in the problems.  We as teachers have to be creative.  As William Zessner said,Writing is a way to work yourself into a subject and make it your own.

So here’s a few ways I’ve engaged students into writing.

  1. Performance tasks/PBL – Performance tasks are a perfect way to engage a student into a problem.  It’s a spring board to have them create their own writing.  This is a 4th grade task that one of my teachers tried out. Stone%20Soup  A teacher can cover at least 3 subjects in one task.
  2. Exit cards.  I have used exit cards to ask questions.  I think of it as an extension of a number talk.  For instance, explain to me that 17 x 28 is greater than 16 x 29.  
  3. Error Analysis.  One question I ask students as closure is “how will you know when you’ve learned this?”  Usually I get answers like “when I get an A on the test.”  I’m never convinced.  I’m looking for the student to give me the answer of “when I can show/teach you the concept.”  I’ve created a template that can change with the concept.  For instance, here’s one on division. Div Err Analysis
  4. Start with the answer...I haven’t used this one yet, but I’ve seen a few versions of it. Let’s say that you start with the answer of 6.  The student has to write a math story to go with it.  I see this especially for 1st and 2nd graders who need practice with their addition and subtraction (and also writing).  

I know I don’t have all the answers.  I’m just starting the exploration.  I would welcome others to leave comments as to how they tackled this topic.  

 

Until next time,

Kristen

Clotheslines for Math concepts

Using clotheslines as an interactive number line has been a hot routine this year.  Last year, I slowly and carefully rolled it out into a few classrooms for use of fractions.  This school year, I’ve expanded into more classrooms, but am proud of how my teachers have especially made it work in K-2 classrooms.   It’s been extraordinary to see using a routine where you get so much “bang for your buck.”  There are a good 2-3 content standards that students have been using, let alone multiple Standards of Math Practice.  

The clothesline makes sense of numbers and number placement.  I especially love the fact that it’s interactive, provokes discussion, and gives insight as to a child’s thinking.  Students are actively learning and using multiple strategies to complete the task.  And more importantly, it is a tool and a model for students to see the “big picture”.  

Let’s breakdown each grade level and how they’ve used the clothesline.

KinderI’m a true believer that if you can make a routine work for kindergarten, you can make it work for any grade level.   Ever since I introduced this to my kindergarten team, they’ve come up with MANY different ways to bring clotheslines to life!  It was rough to begin with, but my kinders have now been through the routine 4-5 times and they’ve got it!   Parents are now asking my teachers what kind of math they’re doing because the kids are telling their parents about what they did.  (Score!)  In September, Mrs. Z and I started with number 0-5 first.  Within weeks, we did 0-8.  And by November we did, 0-10.  It’s imperative to point out that kinders are not working on proportionality of the numbers.  They are just working on counting and cardinality (and measurement and data).  We also tried out using the clothesline with weight.  Instead of literally putting each object in order from least to greatest weight, we kept it simplistic with the light items being placed on the left while the heavier items went on the right.  If they were sure of an item, they placed it in the middle.

First grade – tried it out with numbers 0-25.  Lots of conversation.  Teachers got insight into how their students were thinking about numbers.

Second grade – tried it out with numbers 0-50.  Lots of conversation.  What was unique is that students were using their strategies of counting doubles for a few particular cards.

Third grade – have used this with benchmark fractions.  One 3rd grade team just designed a card set with multiple representations of multiplication.  This will be tried out in the new year

Fourth grade – will be using it for fractions.

Fifth grade – one teacher used it for decimals.  The students had been doing all the operations with decimals and wanted to see their number sense when it came to placing decimals on a number line.  What happened was a complete shock to her.  Students grouped the decimals according to number of digits (for instance, .4 and .5 would group together because they have one digit.)  That completely blew my mind.  Surely, we can’t always assume that our students have a true understanding of a concept when we ask them to apply their knowledge elsewhere.  

Sixth gradeteachers will be using clotheslines for integers and integers integrated with decimals, fractions, and percents.

If anyone is interested in downloading the sets of cards for their own use, look here for my sets of cards.

Until next time,

Kristen

 

 

 

M&Ms spill in Kinder

Whoa! What a week I had.  I have been scribbling enough notes in my notebook that I had to share what’s been going on.  As a matter of fact, I’m going to be working on MULTIPLE blog posts just from all the amazing things I’ve seen/heard/experienced in the past three days.

For this post, I have to talk about the wonderful things that are going on in my kindergarten classes.  My kinder teachers have been enamored with 3 act lessons…..so much that we are designing our own.  My collaborator extraordinaire/partner-in-crime, Mrs.Z and I got together a few weeks ago to brainstorm ideas.  She said she wanted to focus on having the students compare which numbers were bigger/smaller.  Specifically we looked at K.MD.2 – Directly compare 2 objects with a measurable attribute in common, to see which object has “more of”/”less of” the attribute, and describe the difference.

Here’s the video we came up with.  In the spirit of Graham Fletcher (Graham…if you are reading this, I hope I made you proud!) …I present to you M&M Spill.

Act 1 starts with this video.

Mrs. Z did this lesson last week.  I just re-taught it in another kinder classroom.  Lots of notice and wonder. (compiled from both classes)

Notice

  • they were poured out M&Ms
  • different colors
  • the package –M&Ms pic on front, not on back
  • rainbow colors
  • the M&Ms disappeared — (This was one of my favorite things they noticed!)
  • M&Ms made a mess
  • orange, yellow, blue, brown
  • hand opened package and I saw a lot come out
  • M&Ms were dumped out

Wonder

  • Can we eat them?
  • Can we count them?
  • Are there enough for all of us?
  • How many M&Ms are there?
  • Which color has the most?

In Mrs. Z’s class, there was much discussion on how we could figure out the M&M mystery of which color had the most.  One of the students whispered into Mrs.Z’s that they could compare them by color.  At that moment Mrs. Z shouted “Shut the front door!!” (She gets enthusiastic at such brilliant ideas.)  

For the 2nd Act, we gave the students this clue.  They used unifix cubes to model their answers. The students diligently got to work.  

screenshot-2016-09-30-19-51-04

Here’s the part of the lesson that is always fascinating to me. I always wonder…. How do the kids think?  How are they processing the information?  How are they going to show their answers?  And that’s when the show (the learning) begins. (And this is when I usually run around and take my photos…there’s always so much to observe!)

And here’s another thing…there were so many different ways that the students modeled their answers, that I couldn’t just pick one!!!  Take a look at how each one is significant.  

And for the grand finale (Act 3), we re-counted all the M&Ms. We had to check to see which color had the most.img_8041

Final thoughts…

  • Kindergarteners and their thoughts always intrigue me. They are inquisitive little people who see alot.  
  • I was amazed to see their conversation just on the words “Notice” and “Wonder.” Those aren’t exactly kindergarten words, but their insight as to what those words mean was incredible. (More on that in a future post.)
  • Love the process of examining one standard and coming up with an idea on how to cover it. (I can thank Mrs. Z for her marvelous mind which amazes me every time.)
  • And I can never ever ever stress the importance of collaboration.  I love bouncing ideas off of people rather than working in solitude.   Power in numbers! (Math pun!)

Until next time,

Kristen

3 Act Lessons at #SummerMathCamp

#SummerMathCamp 2016 was a busy, insightful week full of notice and wonder about math. Thirty-eight educators chose to spend a week of their summer with us exploring some big ideas in the K-5 standards. We explored number routines and math work stations. We read, reflected, and chatted about the power the SMPs bring to our teaching and students’ learning. We shared the wonder of the #MTBoS; Which One Doesn’t Belong, Estimation 180, Fraction Talks, Number Talk Images, along with our most favorite tasks from our classrooms.

One of the highlights of #SummerMathCamp was introducing our colleagues to the MTBoS’s gem: the 3 Act Lesson.

On Day 1, the campers had the opportunity to experience a 3 act task as a learner. They participated in a 3 Act called “Making It Rain” from The Learning Kaleidoscope. In addition to experiencing the 3 Act, the educators were shown Graham Fletcher’s Cookie Monster. We chatted about what happens each of the three acts. On Day 2, we showed them Jamie Duncan’s version of Cookie Monster, and portions of other 3 Act tasks. Before working in their grade level teams, we revisited the structure of a 3 Act Task and discussed the beauty of taking an everyday occurrence and finding the math in it. The next two afternoons, grade levels took pictures, made videos, and developed the storyline for their 3 Act Tasks (and in some cases a sequel.) On the last day of camp, we held a RED carpet premiere. Ok..it seemed like that in our heads. In reality, it was popcorn and soda for everyone as their work was débuted.

We’d like to share with you a sample of the awesomeness that these math educators created to use with their kids.

Third grade – “Lego Run

Fifth Grade – “Coinstar

Much Ado about Watermelons!

Day 2 of #SummerMathCamp

To feed our math brains at 8 am on a Tuesday morning in the summer, we showed this photo of some watermelons in the hopes of generating some conversation.

How many watermelons are there? How do you know?

watermelons
http://ntimages.weebly.com

This was just going to be 10 to 15 minutes of a notice and wonder conversation. Yea. We were wrong. Fifty minutes later we were still chatting about watermelons. Who knew a pile of cut up watermelons could keep 45 educators engrossed. Really, what is there to talk about—it’s just a bunch of watermelons, people.

carofmelon
Image from: weknowmemes.com

So, here’s what we chatted about.

We predicted that the most common answer would be to cut up two of the one-half sized pieces to make the missing one-fourth pieces, slide those around to make 4 whole watermelons. Then, add the other two halves to make another whole watermelon. So, the sum of 4 whole watermelons and the other whole make 5 watermelons. We thought that some version of this idea would be a good start to the day.

And that’s exactly what happened. One of the campers shared her version and just about every person in the room said, “Yup, I thought about it that way, too.”

Picture1

 

And then Shannon said, “I saw it another way. I saw 4 groups of 3/4 of a watermelon and then I added the 4 one-half sized pieces. So, 3 whole watermelons and two more means that there are 5 watermelons in the picture.” The conversation then moved to connecting Shannon’s use of the algorithm to the photo and then adding in the notation.

Picture2

Since many of the campers were happy to think about the quantity of watermelons using the algorithm in Shannon’s explanation, we thought we would pause here and push on the idea of equivalent representations. [We much preferred thinking of the watermelons as 3 groups of 1—written as 3 x 4/4.]

This provoked lots of conversation on how come we can do this. 

  • How does the image show (4 x 3/4) = (3 x 4/4)? 
  • How does the picture show Shannon’s equation: (4 x 3/4) + (4 x 1/2) = 5?

The third way that surfaced was to simply add all the pieces of the watermelons visible in the photo. We recorded it like this:  ¾ + ½ + ¾ + ½ +¾ + ½ + ¾ + ½

Picture3

Here are some of our takeaways:

  • If it’s important to the kids it MUST be important to us

We need to listen to what our kids are saying and not be on the lookout for the answer listed in the TE or for the student response that matches our preferred strategy.

  • Questions and their power

Your questions need to offer ALL kids a place in the conversation. So, in this situation we could have asked a couple of questions.

  1. How many watermelons are there?
  2. How many whole watermelons are there?

Which question lets the kids who say 8 be in the conversation?

  • Dots on ten frames and Photos of watermelons, almonds, and tangram puzzles

Math is an active subject—it’s interesting, irritating, perplexing, confusing and invigorating. It makes your head hurt when you are in the midst of the struggle and then you get to embrace the high fives when that last piece falls into place and the connection appears as a result of your hard work.

 

Until next time….

Kristen & Judy

 

Reflections of a 1st year coach

This 2015-16 school year is wrapping up ever so quickly. As I’m doing with my teachers, it’s only befitting that I complete one myself—and that’s my own end of the year reflection.  I must practice what I preach and do my own debrief.

My year in review….

  • I’m on all 8 elementary campuses  This doesn’t sound impressive (I work for a small district), but it was one of my goals and I achieved it.  I left my middle school math position only knowing a few elementary teachers.  It was always a hurdle (not an obstacle) to work in some way, shape, or form and get on each elementary campus.  It took a full year…but I did it.  Curiosity fostered, word spread, and my grass-roots campaign was a success. I now have around 40 teachers that I support.giphy-2 
  • More PD than a girl can ask for – I haven’t been to that many conferences as a classroom teacher.  As a math coach, I got more than my fill this year.  No regrets.  I went to the Calif. STEM conference, followed by Calif. Math Council conference in Palm Springs, a few days in Beverly Hills at a HMH Leadership Summit, and then a big finale up in San Francisco at NCTM’s annual conference.  I heard and met such influential people such as Dr. Jo Boaler, Marilyn Burns, Graham Fletcher, Robert Kaplinsky, Andrew Stadel, Emily Diehl, Annie Fetter and so many more.  My head has been spinning with everything that I’ve learned.  It’s been quite a year for my professional development.  
  • Our work – I specifically use the word “our” because I share.  I share plenty of routines, suggestions, and help, but I’m a strong believer of collaboration. My teachers and I have worked on Brian Stockus’ numberless word problems, 3 act lessons from Graham Fletcher, Robert Kaplinsky’s Open Middle problems, Fawn Nguyen’s Math Talks, situations from “Would You Rather?”, used “Which One Doesn’t Belong” pics, and so much more.  We’ve read from blog posts from Kristin Gray, Joe Schwartz, and Graham Fletcher. A big thanks to MTBoS for their inspiring work.   And our work will continue next year as my teachers are looking to push their practice further.  The upcoming year makes me giddy with math excitement!!!!giphy
  • Not just a coach – Even though my title says K-6 math coach, I have learned that this job encompasses so much more.  I not only supported, but I listened, I learned, I cried (yes..it’s true), I thought, I noticed, I laughed, and I empowered my teachers.  I’ve been their biggest cheerleader, their collaborator, their therapist, their friend, their colleague, and their shoulder to cry on.  I have also learned that my most poignant and memorable moments are not only the victories with my teachers, but the downfalls too.  And that’s ok.  We’re all learning together.  But in the end, I got my biggest rush from seeing my teachers walking taller, smiling from ear to ear, giving me high fives, and celebrating their achievements.  My teachers knew that they were doing marvelous work.   There were days where I’ve skipped lunch to run from classroom to classroom, but it’s all worth it to have seen the students benefit from the awe-inspiring teachers I work with.  The tears I’ve shed for them have been out of pure joy and excitement.  
  • Many names   Hilarity has been running amok when I walk into certain classrooms. Apparently, my teachers and their students have been giving me nicknames. It started with a kindergarten teacher calling me the Math Wizard. (Wow…should I start wearing purple cape and big pointy hat?) Fourth grade calls me the Math Master.  Not to be out done —6th graders have started referring me as the Math Goddess. (I picture myself with a white toga and gold jewelry.  Or maybe something in a painting from Botticelli. )  And lastly, a visit to some 3rd grade teachers got the me title of “The  Crack Dealer”…because my math is so good it’s like crack. (How these teachers know about crack…I don’t judge.)  I look at it as a form of sentiment.
  • Starting this blog – This blog has been such a success.  It’s been my success in that I’m documenting all the good work being done at my district.  I’m sharing ideas.  I’m being a part of a bigger network (#MTBoS)).  My teachers are enjoying that their work is being publicized.  One teacher was walking around telling people “I’ve been tweeted.”  Other teachers printed out some of my blog posts about their classrooms and posted them at their Open Houses.  And it’s been a magnificent outlet for me.  I have learned coaching can sometimes be a solitary job.  We are in the background. Our work is intangible. However this is certainly one way to connect to the bigger world out there.  

My hopes in the new school year…

  • PresentingI, along with one of my kindergarten teachers, submitted a proposal to speak at California Math Council conference.  We should be hearing by June if we are chosen.  It’s been a goal of mine to be a presenter and I’m lucky enough to have an amazing collaborator that’s willing to do it with me.  Fingers crossed.  Even if I don’t present, I’m bringing a bus load of teachers with me so that they can share the excitement and inspiration of a conference.
  • Publishing – While at the NCTM conference, I approached the Calif. Math Council booth and thanked them for my free ticket (I had won via Twitter).  We started chatting a bit. One thing leads to another and they are asking me to write an article for them because they never have enough elementary articles to publish.  I walked away with the silliest grin on my face.  How cool would it be to have my thoughts read by teachers -?  The thought is mind-blowing!
  • More – More teachers to support, more students benefitting, more ideas of professional developments (that I can give), more lessons to design, more empowering, more smiles, more laughs, more math!!!
  • This blog – Over the summer, I hope to grow the capacity of this blog.  I want to share my 3 act lessons with everyone.  I haven’t had time and some of my lessons are unfinished, however I still want to build more content.  

It’s been an incredible year of learning.  I wouldn’t change anything about it.

And, I finally have to give a shout out to my husband, son, and parents for putting up with my craziness this year.  I couldn’t do what I do without their love and support.  They are my cheerleaders.

(I’ll continue posting over the summer months as I always have plenty to say.)

Until next time,

Kristen